

Institute

Airborne science driven CFD of small UAS:

Scalable airframe and ice accretion simulations

Robert Comstock (Cal Poly SLO) Sean Lam (U. Washington) Jared Sagaga (SJSU)

AMS Seminar Series NASA Ames Research Center March 22nd 2018

Mentors: Robert Dahlgren Tom Pulliam Christopher Porter

Earth Science Drivers for CFD Analysis

- Quick validation of numerous but usually small changes to aircraft in order to accommodate a wide variety of unique science payloads
 - Addition of a pod-mounted payload; modified nose or fuselage to carry payload
 - Effect of adding NACA scoop or external pylon for gas sensing probe
 - Interaction of prop wash and ground effects on payload sampling
- Simulation of frequently-modified UAS
 - For new payload airworthiness certification
 - Pitot tube study, stability study, etc
 - Evaluate tradeoffs enabled by modularity
- Small UAS in all environments
 - In potential or actual icing-conditions
 - Icing, crosswinds, etc have outsize effect

Project Goals and Outcomes

- Leverage access to unique tools in support of Airborne Science
 - Supercomputer resource allocation, straightforward request via HEC ebooks
 - Licenses to STAR-CCM+ and open source tools
- Document provisioning process and CFD setup for the next PI
- Performance of FrankenRaven and tradeoff study
- CFD on suspected pitot tube location for airspeed indication error
- Performance of dual-fuselage FrankenRaven with instrument pod
- Ice accretion CFD on three small UAS under different cloud conditions
- Validate icing CFD and wind tunnel at very low airspeeds
- Development and documentation of useful scripts and macros

Project 1: CFD of Modular Small UAS

- Modularity for different airframe configurations
 - Multiple fuselage and wing modules
 - Variety of payloads and mission profiles
 - Even simple modularity creates a complex tradeoff space
- Advantages compared to non modular UAS
 - Can be reconfigured on-the-spot
 - Straightforward building and logistics
 - Simplified repairs in the field with spare modules
 - Possible to optimize the airframe around the payload
- Supports variety of ConOps (Concept of Operations)
- Small class I aircraft used to demonstrate/validate

Modular UAS Concept: Fixed Wing

- Piecewise scalable fuselage, wing, battery, thrust, payload, and control surfaces
- Demonstrate the feasibility of modularity with UAS owned by ARC
- The UAS is segmented to facilitate fitting into a backpack
- Use as raw material for new aircraft
 - Connect wing segments with splice
 - Splice fabricated with 3D printing
 - Maximum splice count limited

Modular Framework Enables Tradeoff Space

- Modular aircraft is a new paradigm compared to fixed-configuration aircraft for science-driven applications; follows CubeSat model
- Modular aircraft opens up a new tradeoff space for mission design
- Studies in 2013 in 2014 showed that one of the most powerful variables in the aircraft performance tradeoff space is wingspan
- Number of wings (biplane, triplane)
- Battery count (also increases reliability)
- Payload weight (and ballast if any)
- Control surfaces (size, number, moment arm)
- Propulsors (number of thrust modules)

Considerations for Small UAS Flight Analysis

- Low speed operation: Mach 0.04
- FrankenRaven: Chord D = 8.0'' [203 mm]
- Low Reynolds number flight conditions
 - Between 130k to 400k
 - Large effective wing surface area at low velocity
 - Viscous drag is dominant, pressure drag is less of a factor
- Multiple configurations
 - Entails multiple envelopes of performance
 - Multiple payload capabilities to study

 $\mu = 1.822 \times 10^{-5} \text{ Pas}$

V = 10 m/s to 30 m/s

 ρ = 1.225 kg/m³

OEM (Span = 1.3 m)

Largest Configuration (Span = 2 m)

Workflow - FrankenRaven

- Convert assembly CAD to OML
- STAR-CCM+
 - Utilized built-in solver and mesh tools
- Steady State Reynolds Averaged Navier-Stokes
- Spalart-Allmaras turbulence modeling
 - Low airspeed
 - Expected minimal separation
- Hemispherical domain
- Mirror symmetry about the XZ plane
 - Set up for utilizing same mesh across wide range of velocities and AoA
 - 30 m radius,~200 chord lengths away

Outer Mold Line CAD

Meshing Approach 1: Trimmer

- Trimmer mesh (STAR-CCM+)
 - Unstructured
 - Majority of cells are exact cubes
 - ~12 million cells to simulate FrankenRaven
- Computationally efficient to both mesh and solve
- Difficult to capture blended areas e.g. the wing-to-fuselage pylon on the small UAS
 - Numerous small radius-of-curvature features
 - Accurate modeling demands high local cell count
- Was labor-intensive to get a high fidelity mesh

Meshing Approach 2: Polyhedral

- Polyhedral mesh (STAR-CCM+)
 - Unstructured
 - Cells are 3D polyhedrons with variable face count and arbitrary angles
 - ~3 million cells to simulate FrankenRaven
- Computationally efficient solving
 - Similar residual quality
 - Solved in half the time compared to trimmer
 - Smaller file size
- Lesson learned: polyhedral more efficient for our application

Mesh Convergence

- Important for sweeps
 - Minimize cell count/computation
 - Large effects for large sim sweeps
- Parameters of Interest
 - Base size
 - Local cell size
 - Prism layer attributes
- Change in key parameters
 - Lift and drag
 - Residuals
 - Solver time

States to Simulate

- Solve for constant given climb rate
- Optimize for maximum time on station (minimum power consumption, maximum efficiency, usually just above stall speed)
- Solve for a constant given cruise velocity (constant altitude) equilibrium
 - Thrust must equal drag
 - Lift greater than or equal to aircraft weight

 THIS PRESENTATION
 - Flow has not stalled yet
- Optimize for maximum distance (~ maximum velocity)
- Glide conditions (for FRRB)
- Maneuvers and landing (g-loading for FRRB)

Simulation Sweeps

- 5 configurations
 - Minimize cell count/computation
 - Save time for large sim sweeps
- AoA from -10 to 20
 - Similar to XFOIL and UIUC database
 - Capture zero lift condition
 - 2 degree increments
- Post-processing
 - MATLAB and Java macros for exporting
 - Linear trends for lift and drag
 - Center of pressure for stability

WEIGHT

Thrust and Range Calculations

- Dynamic thrust used as approximation for this study
 - Used for rough thrust calcs in radio control aircraft
 - Function of pitch, RPM, and airspeed
- Equivalent drag used for power required
 - 85% efficiency
- Thrust as a function of propeller specifications, RPM, and airspeed
- Calculations done assuming no margin
 - Margin needs to be included for safety

$$Power = Drag * Velocity$$

$$Flight Time = \frac{Voltage * Capacity}{Power}$$

Points of Equilibrium (OEM)

Payload Capabilities from Equilibrium Points

(*For dual-fuselage configurations, indicated margins are for a 2.67 lb payload)

<u>Configuration</u>	AOA	Velocity (m/s)	<u>Lift</u> (lbf)	Payload* (lb)	Range (km)	<u>Time</u> (min)
	8.3	15	6.7	2.5	27.6	31
	10.5	15	12.1	7.3	27.6	31
	3.4	15	9.1	3.7	27.6	31
	8.8	15	11.4	6.1 (56% margin)	27.6	31
	8.0	15	14.8	7.9 (66% margin)	27.6	31

Pitot Tube Turbulence

May explain autopilot issues when climbing at high AoA

Meshing Alternative

Meshing Alternative

Structured	Unstructured	Hybrid		
Low cell count	High cell count	Low cell count		
Pre-processing is time consuming	Pre-processing is inexpensive	Pre-processing varies depending on geometry		
Hexes comprise of quads	Tets comprised of tris	Compromised of tets, hexes, prisms, and pyramids		
\sim 1.78 million cells	~ 6.2 million cells	~ 2.8 million cells		

Modified from: Tim Baker, "Mesh generation: Art or Science?", Progress in Aerospace Sciences 2005

Wing section

- Opposite edges have to match on the domain
- Each domain is colored differently
- Main goal is to drive cell count down

Tailboom – partial view₂₀

High skewness

22

- T-Rex is an anisotropic tetrahedral extrusion method developed by Pointwise
- It is a highly automated and robust technique for generating unstructured boundary layer meshes for complex geometries
- Helps with resolving high curvature surfaces
- Reduces time in generating the volume mesh

- Better control of cell size transition with the boundary decay parameter
- Increase boundary decay to prevent erratic jumps in cell size
- Quality cell transitions translates to a more accurate modeling of the flow

- Volume mesh in the unstructured block
- Made up of tetrahedrals, pyramids, and prisms
- Generated using T-Rex

Future Considerations

- More equilibrium points
 - Every configuration has a range of steady flight conditions
 - Each range holds key information to flight capabilities
- Further stability analysis
 - How wingspan affects ease of control
 - Simulate lateral conditions
- Simulate flutter and aero-elasticity
- Smaller sweep increments
- Validation
 - Test steady level conditions
 - Static and dynamic thrust tests
- Concept extensible to larger aircraft

Part 3: Aircraft Icing of Low Speed Small UAS

- Test three small UAS in the Icing Research Tunnel to characterize ice accretion at different flight and icing conditions
- Validate LEWICE3D ice accretion research code for low speed small UAS
- Develop and investigate methodologies of quantitative comparison between experimental and simulation ice shape data

Why UAS?

- Lot more interest in Arctic Regions (Climate Change, Trade Routes, Geopolitics)
- More and more common now as their operating costs are much cheaper
- Able to maneuver in more extreme environments
- Are expendable, and do not risk safety of pilots

Motivation: SIERRA Incident

• 2013 - NASA SIERRA Aircraft lost engine power due to potential icing in Alaska

sUAS Icing vs Large Aircraft Icing

- Icing Research Tunnel Testing at NASA Glenn since 1944
- Our test was the first time UAS was in the IRT
- Weight of ice added in proportion to weight of UAS is much bigger
- More drastic change in performance characteristics
- Large aircraft fly fast enough where the aerodynamic forces form the shape of the ice
- Small UAS fly at a speed where gravity may have to be taken into account in ice formation models (not currently in LEWICE3D code)

Test Articles

DataHawk

- Designed/manufactured by University of Colorado
- Electric Motor Flying Wing, Pusher Propeller
- Used by DOE at Oliktok Point, Alaska
- Collect measurements of lower atmospheric properties
- Looking to develop de-icing systems

ArcticShark

- Designed/manufactured by Navmar Applied Sciences Corporation
- Internal combustion engine, pusher propeller
- Weather-tolerant version of TigerShark
- Airborne atmospheric research drone to measure radiative, aerosol, and cloud properties
- Produces 4000 W, 2500 W dedicated to payload

Outlaw SeaHunter

- Designed/manufactured by Griffon Aerospace
- Platform for ISR missions, system tests, R&D, and payload development
- Flew in Canada successfully operating at 15,000 feet at -40 C in Feb 2018

Flight and Icing Cloud Conditions

- Cruise velocities and typical climbing AoA
- Temperature: -10 C (Glaze Ice) and -20 C (Rime Ice)
- Mean Volume Diameter (MVD): 15, 25, 50 μm
- Liquid Water Content (LWC): 0.5, 1.5, 2.0 g/m³
- Exposure time: 10 minutes

*Cloud conditions
were chosen to
match corner
cases from FAA
Appendix C Icing
Certification
Criteria within IRT
operating
envelopes

LEWICE3D Overview

- Research Code by NASA Glenn Research Center
- Simulate ice accretion on 3D aircraft surfaces (in Quasi-3D)

Inputs

Aerodynamic Flow Field

Icing cloud conditions

Computational Module

- Calculate approaching water droplet trajectories
- Calculate mass and energy transfer on surface
- Modeling freezing process in finite control volumes

<u>Outputs</u>

Ice shapes at 2-D section planes of interest

Meshing/CFD for Ice Accretion Simulations

- Same best practices as Low-Reynolds Number Incompressible Flow CFD Meshing
- Unstructured tetrahedrals in fluid domain with structured quads to capture surface resolution
- Boundary Layer Resolution
- Used NASA FUN3D Flow Solver

Methodology – Simulation of Ice Accretion

Methods of Quantitative Comparison

- Used high resolution robotic arm 3D scanner to capture experimental ice shape
- Maximum Combined Cross Sectional Area*

*For swept wings, perpendicular to LE

Methods of Quantitative Comparison

- Find largest horn
 perpendicular to aircraft
 surface
- Horn Location
- Horn Length
- Horn Angle

Methods of Quantitative Comparison

- Area/Volume of Ice
- Estimated Mass*

^{*}Previous studies have used a density of 450 kg/m^3 to account for voids throughout the span

Tapered Wings

- Max Combined Cross Section fails
- Chord/thickness not consistent
- Limited to comparing single cut sections
- SeaHunter and DataHawk faces this problem

ArcticShark: Glaze Ice (-10 C), AoA = 7, V = 70 kts

Glaze Ice = Water droplets do not freeze immediately upon impact Experimental Data LEWICE3D Data

, ,

A Closer Look: Glaze Ice

- LEWICE3D has less ice volume (expected b/c IRT data is MCCS)
- LEWICE3D has lower horn angle
- Horn lengths are similar
- LEWICE3D has minimized icing on stagnation point

ArcticShark: Rime Ice (-20 C), AoA = 7, V = 70 kts

Rime Ice = Water droplets freeze immediately upon impact

A Closer Look: Rime Ice

- LEWICE3D has less ice volume (expected b/c IRT data is MCCS)
- LEWICE3D has lower horn angle
- Horn lengths are similar
- LEWICE3D has minimized icing on stagnation point

Sources of Errors/Inconsistencies

- Assumed atmospheric pressure in LEWICE3D sims, IRT static pressures vary
- Have not done mesh convergence studies with icing simulations
- Assumed universal droplet size in LEWICE3D, IRT has a drop-size distribution
- IRT is not typically calibrated to low speeds
- LEWICE3D does not use a multi-time-step approach with updated flow fields
- Max Combined Cross Section is not exactly representative of full 3D ice shape
- Flow Angularity and Wall Effects in the IRT
- Surface roughness on test article

Future Research

- Further data post-processing (average cross section, compute volume, etc)
- GLENNICE Full 3D Ice Accretion Software Release in Late 2019
- Another Icing Tunnel Test in November 2018
- Multi-rotor aircraft
- Engine-on testing
- Aerodynamic testing of ice shapes in wind tunnel
- Wind tunnel testing of de-icing strategies (thermal de-icing, icephobic materials, mechanical de-icing)
- Ice sensors coupled with de-icing control systems
- Actual Flight Testing in Icing Conditions

Big Thanks To.....

- Robert Dahlgren, an amazing mentor
- Matthew Fladeland, interface with the science community
- James Brass, Code SGE Branch Chief
- Christopher Porter (NASA GRC) for LEWICE3D support
- Thomas Pulliam / Michael Schuh for CFD support
- Jack Oldenburg and Seth Sederholm (IRT)
- IRT operations, scanning, calibration team
- Ved Chirayath/Cetin Kiris for computational power
- Summer 2017 Interns
- John Coffey and rest of the UAS icing partners
- BAERI for contracting services
- Christopher Penny for STAR-CCM+ support
- Alex Mazhari for aero analysis support

References

- 1. Fujiwara, G. and M. Bragg. 2017. 3D computational icing method for aircraft conceptual design. In: 9th AIAA Atmospheric and Space Environments Conference.
- 2. Potapczuk, M. and A.Broeren. 2017. An Integrated Approach to Swept Wing Icing Simulation. In: 7th European Conference for Aeronautics and Space Sciences.
- 3. Tim Baker, "Mesh generation: Art or Science?", Progress in Aerospace Sciences 2005

Backup Slides

CFD Aerodynamic Flow Field

- Used NASA FUN3D Unstructured Flow Solver
- LEWICE3D uses flow field to solve ice growth calculation in one time-step
- Ideally, use multiple time-steps, updating the mesh and flow field every time
- LEWICE2D does this with 2D inviscid panel method
- 3D Mesh Adaptation and RANS (Viscous) 3D Flow Solution too computationally expensive
- This feature will be implemented in next-generation LEWICE3D (GLENNICE3D)

for every timestep
calculate trajectories using flow field
calculate ice shapes
update mesh based on ice shapes
calculate flow field on new mesh
repeat

CFD WorkFlow

